Étude de suites réelles et complexes

- 1. On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ telle que $(u_{2n})_{n\in\mathbb{N}}, (u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 2. On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ telle que $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. On considèrent des suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que

$$u_n + v_n \xrightarrow[n \to +\infty]{} 0$$
 et $u_n^3 - v_n^3 \xrightarrow[n \to +\infty]{} 0$.

Montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ont pour limite 0. Traiter le cas complexe.

- 4. Montrer que de toute suite réelle, on peut extraire une sous-suite monotone.
- **5.** (a) On considèrent une suite réelle $(u_n)_{n\in\mathbb{N}}$ puis des réels distincts a et b telles que $(|u_n-a|)_{n\in\mathbb{N}}$ et $(|u_n-b|)_{n\in\mathbb{N}}$ convergent. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
 - (b) Reprendre l'étude dans C.
- 6. Étudier les suites

$$a_n = \left(\cos\frac{1}{\sqrt{n}}\right)^n$$
, $b_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$, $c_n = (n+1)^{\frac{n+2}{n+1}} - n^{\frac{n+1}{n}}$,

$$x_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k^2 + nk}}.$$

7. Á deux suites complexes $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$, on associe la suite

$$x_n = \frac{1}{n+1} \sum_{p=0}^{n} a_p b_{n-p}.$$

Montrer que si $(a_n)_{n\in\mathbb{N}}$ tend vers α et $(b_n)_{n\in\mathbb{N}}$ tend vers β , la suite $(x_n)_{n\in\mathbb{N}}$ tend vers $\alpha\beta$.

8. (a) Étudier les suites

$$u_n = \sum_{p=0}^n \frac{1}{\binom{n}{p}^{\alpha}}$$
 et $v_n = \sum_{p=0}^n \frac{1}{\binom{n}{p}^{\frac{1}{n}}}$,

où α est un réel ≥ 0 .

- (b) Dans le cas $\alpha = 1$, donner un développement asymptotique de $(u_n)_{n \in \mathbb{N}}$ avec trois termes significatifs.
- 9. Les nombres de Fibonacci sont définis par : $F_0=0$, $F_1=1$ et : $F_{n+2}=F_{n+1}+F_n$, $(\forall\, n\in\mathbb{N})$. Étudier la suite $u=(u_n)_{n\geqslant 1}$ dont le terme s'écrit pour $n\geqslant 1$: $u_n=\sum_{F_n\leqslant k\leqslant F_{n+1}}\frac{1}{k}$.
- **10.** Soit la suite récurrente définie par : $u_0 = 2, u_1 = 3$ et :

$$(\forall n \in \mathbb{N}), \quad u_{n+2} = 3u_{n+1} + 2u_n.$$

- (a) Écrire une procédure itérative et récursive fournissant le n-ième terme de la suite $(u_n)_{n\in\mathbb{N}}$.
- (b) Donner une expression explicite de u_n en fonction de $n \in \mathbb{N}$.
- (c) Déterminer un réel $\xi > 0$ tel que :

$$(\forall n \in \mathbb{N}^*), \quad E(\xi^n) \equiv n \mod 2.$$

11. Trouver toutes les fonctions $f:]0, +\infty[\longrightarrow]0, +\infty[$ telles que :

$$(\forall x > 0), \quad f(f(x)) = 6x - f(x).$$

- **12.** On considère une suite de réels $(a_n)_{n\in\mathbb{N}}$ telle que : $a_{n+2}=|a_{n+1}|-a_n$, pour tout $n\in\mathbb{N}$. Démontrer que $(a_n)_{n\in\mathbb{N}}$ est 9-périodique.
- **13.** On considère les trois suites $x=(x_n)_{n\in\mathbb{N}}, y=(y_n)_{n\in\mathbb{N}}$ et $z=(z_n)_{n\in\mathbb{N}}$ définies par $x_0>0, y_0>0$ et $z_0>0$ puis la récurrence :

$$(\forall n \in \mathbb{N}),$$

$$\begin{cases} x_{n+1} = |y_n - z_n| \\ y_{n+1} = |x_n - z_n| \\ z_{n+1} = |x_n - y_n|. \end{cases}$$

- Montrer que ces trois suites convergent vers trois limites dont deux sont égales et l'autre nulle.
- 2) Démontrer que si x_0, y_0 et z_0 sont rationnels, ces trois suites finissent par stationner.
- 3) Déterminer les trois limites dans le cas $x_0 = 0, y_0 = a$ et $z_0 = b$ où $(a, b) \in \mathbb{N}^2$.
- 4) Dans la suite, on suppose $x_0 = 0, y_0 = 1$ et $z_0 = t$, où t est un réel ≥ 0 .

On pose alors:
$$f(t) = \max \left(\lim_{n \to +\infty} x_n, \lim_{n \to +\infty} y_n, \lim_{n \to +\infty} z_n \right).$$

- 4-a) Démontrer les relations : f(t) = tf(1/t) et f(t+1) = f(t), pour tout t > 0.
- 4-b) Établir pour tout $t \ge 0$: $f(t) = f(\lbrace t \rbrace)$, où pour s > 0, l'on a posé : $\lbrace s \rbrace = s \vert s \vert$.
- 4-c) Établir pour tout $t \ge 0$: $f(t) = f(1 \{t\}) = f(d(t, \mathbb{N}))$, où $d(t, \mathbb{N}) = \min\{|t n| ; n \in \mathbb{N}\}$.
- 5) On suppose : $x_0 = 0, y_0 = 1$ et $z_0 = t$, où t est un réel ≥ 0 .

Déterminer:
$$\max \left(\lim_{n \to +\infty} x_n, \lim_{n \to +\infty} y_n, \lim_{n \to +\infty} z_n \right).$$

14. On considère les suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ et $(d_n)_{n\in\mathbb{N}}$ définies par $(a_0,b_0,c_0,d_0)\in\mathbb{R}^4$ puis la récurrence :

$$(\forall n \in \mathbb{N}), \qquad \begin{cases} a_{n+1} = |a_n - b_n| \\ b_{n+1} = |b_n - c_n| \\ c_{n+1} = |c_n - d_n| \\ d_{n+1} = |d_n - a_n|. \end{cases}$$

On note ξ le réel tel que $\xi-1$ soit l'unique racine réelle de $X^3+2X^2-2.$

Démontrer que ces suites finissent par stationner vers 0 sauf s'il existe un entier $p \in \mathbb{N}$ tel que :

$${a_p, b_p, c_p, d_p} = {1, \xi, \xi^2, \xi^3},$$

à une transformation près à préciser.

- **15.** Démontrer que pour tout $n \in \mathbb{N}$: $|\sqrt{n+1} + \sqrt{n}| = |\sqrt{4n+2}|$.
- **16.** On se donne un entier naturel $n \ge 1$ et on considère la suite $(x_p)_{p \in \mathbb{N}}$ telle que $x_0 = n$ et

$$(\forall p \in \mathbb{N}), \quad x_{p+1} = \left\lfloor \frac{1}{2} \left(x_p + \frac{n}{x_p} \right) \right\rfloor.$$

Démontrer que la suite finit par osciller aux deux valeurs $\lfloor \sqrt{n} \rfloor$ et $\lfloor \sqrt{n} \rfloor + 1$ si n+1 est un carré parfait, ou par stationner à $\lfloor \sqrt{n} \rfloor$ sinon.

- 17. On définit la suite $u = (u_n)_{n \in \mathbb{N}}$ par $u_0 \in \mathbb{N}^*$ et $u_{n+1} = u_n + \lfloor \sqrt{u_n} \rfloor$. Démontrer que dans les valeurs prises par u, il y'a une infinité de carrés.
- **18.** On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}$ et :

$$(\forall n \in \mathbb{N}), \quad u_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} u_k^2.$$

- (a) Pour $u_0 = 2$, cette suite est-elle à valeurs entières ?
- (b) Pour $u_0 = 4$, cette suite est-elle à valeurs entières?

19. Étudier la suite

$$u_n = \sin\left(\pi(2+\sqrt{3})^n\right).$$

- **20.** Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle. On suppose que $x_{n+1} x_n \xrightarrow[n \to +\infty]{} 0$. Démontrer que l'ensemble des valeurs d'adhérence de la suite $(x_n)_{n\in\mathbb{N}}$ est un intervalle.
- **21.** On considère deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ à valeurs $\geqslant 0$, telles que

$$a_n^n \xrightarrow[n \to +\infty]{} a, \qquad b_n^n \xrightarrow[n \to +\infty]{} b,$$

où a et b sont des réels > 0. On introduit deux réels positifs p,q de somme 1. Étudier la suite $((pa_n + qb_n)^n)_{n \in \mathbb{N}}$.

22. Étudier la suite

$$u_n = \sum_{k=1}^n \operatorname{ch} \frac{1}{\sqrt{n+k}} - n.$$

23. On considère la suite

$$a_n = \prod_{k=1}^n (a+kb)^{\frac{1}{n}}, \text{ où } a > 0 \text{ et } b > 0.$$

Démontrer que :

$$\frac{a_n}{n} \xrightarrow[n \to +\infty]{} \frac{b}{e}.$$

Faire avec le logiciel une implémentation de la suite $(a_n)_{n\in\mathbb{N}}$ et vérifier le résultat.

- **24.** On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ de terme général : $u_n=\prod_{k=1}^n\left(x+\frac{k}{n}\right)$ où x>0.
 - (a) Démontrer que sur $]0, +\infty[$, la fonction $f: t \mapsto (t+1)\ln(t+1) t\ln t 1$ s'annule en un unique réel $\sigma > 0$.
 - (b) Vérifier que si I est un intervalle de \mathbb{R} et $g:I\to\mathbb{R}$, une fonction de classe C^2 , l'on a :

$$(\forall (a,b) \in I^2), \quad \int_a^b g(t) \ dt = (b-a)g(a) + \frac{(b-a)^2}{2}g'(a) + \int_a^b \frac{(b-s)^2}{2}g''(s) \ ds.$$

- (c) Étudier alors la convergence de $(u_n)_{n\in\mathbb{N}^*}$ en fonction de la position de x>0 par rapport au réel σ . On précisera les limites éventuelles en fonction de σ .
- **25.** On pose $P_n(X) = X^4 nX^3 nX^2 nX + 1$, pour tout entier $n \ge 1$.
 - (a) Montrer que P_n admet des racines réels, pour tout entier $n \ge 1$. On pose a_n la plus grande d'entre elles, pour tout entier $n \ge 1$.
 - (b) Déterminer : $\lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n^2}$
- **26.** (a) Étudier pour a réel, la suite

$$u_n = \prod_{k=0}^n \left(1 + \frac{ka}{n^2} \right).$$

- (b) Reprendre la même étude pour a complexe.
- (c) Pour un réel a > 0, donner un développement asymptotique à deux termes de la suite $(u_n)_{n \in \mathbb{N}}$.
- (d) Reprendre la même étude pour la suite à valeurs dans $M_p(\mathbb{C})$

$$M_n(A) = \prod_{k=1}^n \left(I_p + \frac{k}{n^2} A \right), \quad (A \in M_p(\mathbb{C})).$$

- **27.** On considère une suite complexe bornée $(z_n)_{n\in\mathbb{N}}$. On suppose la suite $(z_n + \frac{1}{2}z_{2n})_{n\in\mathbb{N}}$ convergente dans \mathbb{C} . Étudier la suite $(z_n)_{n\in\mathbb{N}}$.
- **28.** On considère un réel α tel que $|\alpha| < 1$; à tout suite $(x_n)_{n \in \mathbb{N}}$, on associe la suite $y_0 = x_0$ et $y_n = x_n \alpha x_{n-1}$, pour tout $n \in \mathbb{N}^*$. Montrer que $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ sont de même nature.

29. On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ telle que pour tout entier $n\geqslant 1$, on a

$$u_n = \int_0^1 \frac{t^n}{1+t^n} \ dt.$$

Montrer que l'on a : $u_n \sim \frac{\ln 2}{n}$.

30. Déterminer la limite de la suite

$$u_n = \int_0^1 \frac{dt}{\sqrt{1 + t + \dots + t^n}}.$$

31. Donner un équivalent de la suite

$$u_n = \int_0^1 \frac{nx \sin x}{1 + n^3 x^3} \ dx.$$

- **32.** Donner un équivalent de la suite : $u_n = \sum_{k=1}^n k^s$, $s \ge -1$.
- 33. Donner un équivalent de la suite :

$$u_n = \sum_{k=1}^n \frac{k^2}{\sqrt[3]{n^3 + k^3}}.$$

- **34.** On considère $p \in \mathbb{N}$. Discuter la convergence de la suite : $u_n = \sin(\pi(\sqrt{p})^n)$.
- 35. Donner une CNS sur le réel θ pour que la suite $(\cos(n\theta))_{n\in\mathbb{N}}$ converge.
- **36.** Soit des nombres complexes distincts x_1, \dots, x_p . On considère des complexes $\lambda_1, \dots, \lambda_p$ et on définit la suite de terme : $u_n = \lambda_1 x_1^n + \dots + \lambda_p x_p^n$.
 - (a) On suppose que pour tout $k \in [1, p]$, $|x_k| \ge 1$ et $u_n \xrightarrow[n \to +\infty]{} 0$. Démontrer que : $\lambda_1 = \cdots = \lambda_p = 0$.
 - (b) On suppose que $u_n \xrightarrow[n \to +\infty]{} 0$. Établir que

$$(\forall k \in [1, p]), \qquad \lambda_k \neq 0 \Longrightarrow |x_k| < 1$$

- (c) Donner une CNS pour la suite $(u_n)_{n\in\mathbb{N}}$ soit bornée.
- 37. On considère des complexes $\lambda_0, \dots, \lambda_p$ et $\theta_0, \dots, \theta_p$ des réels tels que $1 = \theta_0 > \theta_1 > \dots > \theta_p \geqslant 0$. On pose

$$u_n = \sum_{k=0}^{p} \lambda_k \cos(n\theta_k \pi).$$

Démontrer que

$$\left(\lim_{n \to +\infty} u_n = 0\right) \Longrightarrow \left(\lambda_0 = \dots = \lambda_p = 0\right).$$

38. On pose pour tout entier $n \ge 1$

$$G_n = \left(\binom{n}{0} \times \binom{n}{1} \times \dots \times \binom{n}{n} \right)^{\frac{1}{n+1}}$$

Étudier la suite

$$u_n = \sqrt[n]{G_n}$$
.

39. On considère un complexe z. Montrer que

$$\left(1+\frac{z}{n}\right)^n \xrightarrow[n\to+\infty]{} e^z.$$

40. On considère la suite à valeurs complexes définie pour $n \ge 1$ par : $z_n = \prod_{p=1}^n \left(1 + \frac{i}{p}\right)$.

- (a) Montrer que $(|z_n|)_{n\geqslant 1}$ converge vers un réel $\rho>0$.
- (b) Montrer que $(z_n)_{n\geqslant 1}$ diverge.
- (c) Montrer que l'ensemble de ses valeurs d'adhérence est le cercle centré à l'origine de rayon ρ .
- **41.** On considère une fonction continue $f: \mathbb{R} \to \mathbb{R}$ et la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in \mathbb{R}$ et : $(\forall n \in \mathbb{N}), \quad u_{n+1} = f(u_n)$. Démontrer que $(u_n)_{n \in \mathbb{N}}$ converge si et seulement si elle possède une unique valeur d'adhérence.
- **42.** On considère une fonction continue $f:[0,1] \to [0,1]$ puis la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in [0,1]$ et : $(\forall n \in \mathbb{N}), u_{n+1} = f(u_n)$. Montrer que $(u_n)_{n \in \mathbb{N}}$ converge si et seulement si : $u_{n+1} u_n \xrightarrow{n \to +\infty} 0$.
- **43.** (a) On considère une fonction continue $f:[0,1] \to [0,1]$. Démontrer que la suite $(u_n)_{n\geqslant 1}$ définie par $u_0 \in [0,1]$ et :

$$(\forall n \in \mathbb{N}), \quad u_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} f(u_k),$$

converge vers un point fixe de f.

- (b) Que peut-on dire si f n'est pas continue?
- 44. Etudier les suites récurrentes suivantes
 - (a) $u_{n+1} = \sqrt{2 + u_n}, \ u_0 \ge 0.$
 - (b) $u_{n+1} = \frac{1}{2}(3 u_n^2), 0 < u_0 < 1.$
 - (c) $u_{n+1} = \cos u_n, u_0 \in \mathbb{R}$.
 - (d)

$$u_{n+1} = \frac{\sqrt{u_n}}{\sqrt{u_n} + \sqrt{1 - u_n}}, \ u_0 \in [0, 1].$$

- (e) $u_{n+1} = \frac{3}{2u_n^2 + 1}, \ u_0 \in \mathbb{R}.$ (On pourra s'aider d'un logiciel de calcul formel)
- (f) $u_{n+1} = a + b \frac{ab}{u_n}, \ u_0 = a + b, \ 0 < a \le b.$
- **45.** On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par : $x_0=x>0$ et $x_{n+1}=x^{x_n}$, pour tout $n\in\mathbb{N}$.
 - (a) Démontrer que la suite $(x_n)_{n\in\mathbb{N}}$ est bien définie.
 - (b) Démontrer l'existence d'un réel x > 0 tel que : $x_n \xrightarrow[n \to +\infty]{} 2$.
 - (c) Existe t-il un tel réel x > 0 tel que : $x_n \xrightarrow[n \to +\infty]{} 3$?
- **46.** On donne la suite complexe récurrente $z_0 = \rho e^{i\theta}$ et

$$(\forall n \in \mathbb{N}), \qquad z_{n+1} = \frac{1}{2}(z_n + |z_n|),$$

avec $\rho > 0$ et $\theta \in]-\pi,\pi]$. Déterminer la limite de $(z_n)_{n\in\mathbb{N}}$.

47. Donner un équivalent de la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0>0$ et

$$(\forall n \in \mathbb{N}), \quad u_{n+1} = \arctan(u_n).$$

48. On considère la suite réelle $(u_n)_{n\in\mathbb{N}^*}$ définie par la récurrence, pour tout $n\in\mathbb{N}^*$

$$u_0 = a > 0$$
, $u_1 = b > 0$, $u_{n+1} = \frac{u_n}{1 + u_n u_{n-1}}$

Étudier cette suite et préciser en un équivalent.

49. Donner un équivalent de la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et

$$(\forall n \in \mathbb{N}), \qquad u_{n+1} = u_n + e^{-u_n^2}.$$

50. (a) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0>0$ et

$$(\forall n \in \mathbb{N}), \quad u_{n+1} = u_n + \frac{1}{u_n}.$$

- (b) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et donner en un équivalent.
- (c) Vérifiez à l'aide d'un logiciel de calcul formel que pour $u_0 = 5$, on a

$$45 < u_{1000} < 45, 1.$$

- (d) Établir rigoureusement ce résultat.
- **51.** (a) Montrer que pour l'entier n > 1, l'équation

$$x - n\ln\left(1 + \frac{x}{n+1}\right) = 0$$

possède une unique solution contenue dans]-2,-1[, notée x_n .

- (b) Montrer que la suite $(x_n)_{n>1}$ tend vers -2.
- (c) Préciser un équivalent de la suite $(\sigma_n)_{n>1}$ de terme général

$$\sigma_n = x_n + 2.$$

- (d) Démontrer que x_n admet un développement limité à tout ordre en $\frac{1}{n}$.
- (e) On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=0, a_1=2, a_2=-\frac{4}{3}$ et :

$$(\forall n \ge 3), \quad a_n = -\frac{1}{n+1} \left(2(n-1)a_{n-1} + \sum_{p=1}^{n-2} (pa_p + (p+1)a_{p+1})a_{n-p} \right).$$

Faire avec le logiciel une implémentation itérative de la suite $(a_n)_{n\in\mathbb{N}}$ et vérifier sur quelques valeurs de l'entier n>1, la relation :

$$x_n = n \sum_{k=0}^{\infty} \frac{(-1)^k a_k}{(n+1)^k}$$
.

- (f) Que peut-on conjecturer sur la monotonie de $(x_n)_{n\in\mathbb{N}}$?
- **52.** (a) Montrer que sur chaque intervalle $I_n = \left[\left(n \frac{1}{2} \right) \pi, \left(n + \frac{1}{2} \right) \pi \right]$, l'équation

$$(E_n)$$
 $\tan x = x$

admet une solution unique notée x_n , où n désigne un entier ≥ 1 .

(b) Démontrer que l'on a

$$x_n = n\pi + \frac{\pi}{2} + \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + o\left(\frac{1}{n^3}\right),$$

où a,b et c sont des réels à déterminer.

- (c) Montrer alors que la série $\sum_{n\geqslant 1}\frac{1}{x_n^2}$ converge. Que peut-on raisonnablement conjecturer sur sa somme, à l'aide de Python ?
- **53.** On se fixe un réel $0 < \lambda < 1$ et pour un entier $n \ge 1$, on considère sur \mathbb{R}^+ l'équation

$$(E_n)$$
 $e^{-x} \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) = \lambda.$

- (a) Montrer que (E_n) admet une solution unique notée a_n .
- (b) Montrer que la suite $(a_n)_{n\geqslant 1}$ est strictement croissante.
- (c) Montrer que la suite $(a_n)_{n\geqslant 1}$ tend vers $+\infty$.

- (d) Démontrer en fait que $a_n \sim n$.
- (e) On pose $\lambda = \frac{1}{2}$. Que donne le logiciel sur le comportement de la suite $(a_n n)_{n \geqslant 1}$?
- **54.** Pour tout $n \ge 1$, on considère sur \mathbb{R}^+ l'équation définie implicitement par

$$(E_n)$$
 $x^n + x^{n-1} + \dots + x - 1 = 0.$

- (a) Montrer que pour tout $n \ge 1$, (E_n) admet une unique solution unique notée u_n .
- (b) Montrer que la suite $(u_n)_{n\geqslant 1}$ tend vers $\frac{1}{2}$.
- (c) Illustrer ce résultat à l'aide d'un logiciel de calcul formel.
- (d) Donner un développement asymptotique avec trois termes significatifs de $(u_n)_{n \ge 1}$.
- (e) Vérifier brièvement à l'aide d'un logiciel du programme la relation, pour $n \ge 1$

$$u_n = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{1}{2^{k(n+1)+1} \times k} {k(n+1) \choose k-1}.$$

55. On considère pour un réel a>0 et pour tout entier naturel $n\geqslant 1$ la fonction

$$\varphi_n(x) = \frac{a}{x} + \frac{1}{x-1} + \dots + \frac{1}{x-n} = \frac{a}{x} + \sum_{k=1}^n \frac{1}{x-k}$$

(a) Étudier sur \mathbb{R} le nombre de solutions de l'équation

$$(E_{\lambda}) \qquad \qquad \varphi_n(x) = \lambda$$

où λ désigne un réel.

- (b) On se fixe un réel $\lambda > 0$. Montrer l'existence d'une unique racine réelle x_n dans $]n, +\infty[$ à l'équation (E_{λ}) .
- (c) Mettre en évidence à l'aide du logiciel la convergence de la suite $\left(\frac{x_n}{n}\right)_{n\geqslant 1}$. (On pourra essayer avec $a=\frac{1}{2}$ et $\lambda\in\{\ln 2,\ln 3\}$)
- (d) Montrer que lorsque n tend vers l'infini, on a :

$$x_n \sim \frac{n}{1 - e^{-\lambda}}.$$

(e) Donner un équivalent de la suite :

$$y_n = x_n - \frac{n}{1 - e^{-\lambda}}.$$

56. On se fixe $a \in \mathbb{Z}$ et on considère $(x_n)_{n \in \mathbb{N}}$ la suite définie par : $x_0 = 4, x_1 = 0, x_2 = -2, x_3 = 3$ et :

$$(\forall n \in \mathbb{N}), \quad x_{n+4} = -x_{n+2} + x_{n+1} + ax_n.$$

Démontrer que pour tout entier premier p, l'entier p divise x_p .

Indications pour quelques exercices

3.

- a) Montrer par un raisonnement par l'absurde que ces suites sont bornées.
- b) En déduire que $u_n^3 v_n^3 \xrightarrow[n \to +\infty]{} 0$ et conclure.
- 4. La suite $v = \arctan(u)$ permet de se ramener au cas où u est bornée. Le théorème de B-W permet de se ramener au cas où u est convergente, puis par suite où u est de limite nulle.
 - **5.** On pourra considérer les suites : $((u_n a)^2)_{n \in \mathbb{N}}$ et $((u_n b)^2)_{n \in \mathbb{N}}$.
- 7. On pourra traiter d'abord le cas : $\beta=0$: dans ce cas, on utilise le lemme de Césaro. Le cas général est facile alors.
 - 8. On peut commencer par le cas $\alpha = 1$.
 - (a) Montrer que : $\binom{n}{k} \geqslant \binom{n}{2}$, pour tout $2 \leqslant k \leqslant n-2$.
 - (b) En déduire que : $u_n \xrightarrow{n \to +\infty} 2$.
 - (c) Pour $\alpha > 0$, ce qui précède se généralise.
 - (d) Pour la suite $(v_n)_{n\in\mathbb{N}}$, utiliser : $v_n \geqslant \sum_{p=0}^{N} \frac{1}{\binom{n}{p}^{\frac{1}{n}}} \xrightarrow{n\to+\infty} N+1$, pour tout entier N.
 - 9. Utiliser la constante d'Euler vue en cours : $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$.
 - 10. On pourra considérer ξ , issue de l'équation caractéristique associée à la suite récurrente u.
 - Etablir que l'on finit par trouver deux termes consécutifs négatifs.

13.

- 1) On pourra étudier la monotonie de ces suites, en exploitant : $||a| |b|| \le |a b|$, lorque a et b sont réels.
- 2) Commencer par le cas : $(x_0, y_0, z_0) \in \mathbb{Z}^3$ et exploiter le fait que si ce triplet est remplacé par $(\lambda x_0, \lambda y_0, \lambda z_0)$, les trois suites sont respectivement égales à $\lambda x, \lambda y$ et λz , pour tout $\lambda \ge 0$.
- 3) On trouve les réels : 0, PGCD(a, b) et PGCD(a, b). Il suffit de traiter le cas où a et b sont premiers entre eux.
- 5) On trouve le réel $\mathcal{T}(x)$, où $\mathcal{T}(x)$ est la fonction de Thomae, définie par : $(\forall x \in \mathbb{R})$,

$$\mathcal{T}(x) = \left\{ \begin{array}{ll} \frac{1}{q} & \text{si } x = \frac{p}{q} \in \mathbb{Q} \text{ est sa représentation irréductible} \\ 0 & \text{si } x \text{ est irrationnel.} \end{array} \right.$$

- 18. C'est plus un exercice d'informatique.
- (a) La réponse est non. Avec l'ordinateur, on voit (laborieusement) que 17 est le premier indice n où u_n est non entier.
- (b) La réponse est encore non. On plante rapidement l'ordinateur (double le nombre de chiffres à chaque étape) par la technique précédente. En travaillant dans \mathbb{F}_p , pour p premier, la suite est plus facile à étudier. On constate que u_{59} n'est pas entier.

- **19.** Remarquer que : $(2+\sqrt{3})^n + (2-\sqrt{3})^n = p_n$ est un entier pair, pour tout $n \in \mathbb{N}$.
- **20.** On considère a < b des valeurs d'adhérence de $(x_n)_{n \in \mathbb{N}}$. Soit un réel $c \in]a,b[$. On veut établir que c est une valeur d'adhérence. Introduire un réel $0 < \varepsilon < \min(c-a,b-c)$ et un entier N tel que : $(n \ge N) \Longrightarrow |x_{n+1} x_n| \le \varepsilon$.

22.

- (a) Faire entrer n dans la somme et exploiter la relation : $\operatorname{ch}(x) 1 = 2 \operatorname{sh}^2(x/2)$, pour $x \in \mathbb{R}$.
- (b) Trouver une majoration fine de $|\operatorname{sh}(t) t|$ par l'inégalité des accroissements finis et conclure.
- **23.** Mettre *b* en facteur, passer au logarithme et utiliser une comparaison à l'aide d'une intégrale (le vrai outil étant la fonction Gamma d'Euler).
 - 24. Passer aux logarithmes et penser aux sommes de Riemman.
 - **25.** Montrer que : $n \le a_n \le n+1$, pour $n \ge 1$.
- 27. Si la suite converge, sa limite est 2/3. Montrer que si elle diverge, on peut faire apparaître une suite de valeurs d'adhérences, qui est non bornée, sauf si elle est initialisée à 2/3.
- **28.** Introduire la suite $(y_n/\alpha^n)_{n\in\mathbb{N}}$ et étudier les résultats sur les séries, propre à la sommation des relations d'équivalents et de prépondérence.
 - **29.** Faire une IPP ou faire le changement de variable : $x=t^n$, puis appliquer le théorème de CVD.
 - **30.** Montrer que : $u_n \xrightarrow[n \to +\infty]{} \int_0^1 \sqrt{1-t} \ dt = 2/3.$
 - **31.** Faire un changement de variable t = nx et utiliser la CVD.
- **36.** Pour se faire une idée : on peut commencer par le cas p=3. Si a,b et c sont des complexes distincts tels que : $a^n+b^n+c^n \xrightarrow[n\to+\infty]{} 0$, alors |a|<1, |b|<1 et |c|<1. Pour cela on pose $u_n=a^n+b^n+c^n$, et on exprime par les formules de Cramer a^n en fonction de u_n,u_{n+1} et u_{n+2} . On peut adapter cette technique au cas général.
- **39.** On vérifie d'abord le résultat avec le module, puis on écrit : $1 + \frac{z}{n} = \rho_n e^{i\theta_n}$, pour n assez grand.

40.

- (a) Montrer que $(|z_n|)_{n\geqslant 1}$ est croissante majorée. On pourra utiliser : $1+x\leqslant e^x$, pour $x\in\mathbb{R}$.
- (b) Exploiter la relation : $1 + \frac{i}{p} = \left(1 + \frac{1}{p^2}\right)^{\frac{1}{2}} e^{i\theta_p}$, où $\theta_p = \arctan(1/p)$.
- **41.** On note a son unique valeur d'adhérence. On montre alors que u est bornée. Introduire pour cela des réels : $\alpha < a < \beta$ puis M > 0 tels que : $f([\alpha, \beta]) \cup [\alpha, \beta] \subset [-M, M]$.
- 42. Remarquer que les valeurs d'adhérence sont des points fixes de f et que leur ensemble constitue un intervalle.

43.

- (a) Remarquer que les valeurs d'adhérence sont des points fixes de f et que leur ensemble constitue un intervalle.
- (b) Prendre pour $f = \chi_{\mathbb{O} \cap [0,1]}$.
 - **45.** Mener l'étude de la fonction : $t \mapsto \frac{\ln(t)}{t}$ sur $]0, +\infty[$.

- **46.** Exprimer ρ_n et θ_n dans l'écriture trigonométrique : $z_n = \rho_n e^{i\theta_n}$.
- **49.** On pourra introduire : $v_n = \frac{e^{u_n^2}}{u_n}$.
- 50. Élever la relation de récurrence au carré.
- **52.** Pour la question (b), exploiter la relation : $x_n = \tan(x_n) = \tan(x_n n\pi)$ et donc :

$$x_n - n\pi = \arctan(x_n).$$

54. Pour la question (b), montrer que la suite $(u_n)_{n\geqslant 1}$ est strictement décroissante et que l'on a :

$$(\forall n \in \mathbb{N}^*), \quad u_n^{n+1} - 2u_n + 1 = 0.$$

- **55.** (d) On pourra étudier la suite $(\varphi_n(n\alpha))_{n\geqslant 1}$, en faisant apparaître une somme de Riemann, où $\alpha>1$.
- **56.** Trouver une matrice $A \in M_4(\mathbb{Z})$ telle que : $x_n = \operatorname{tr}(A^n)$, pour tout entier $n \in \mathbb{N}$. Se servir, en travaillant dans \mathbb{F}_p , que : $\operatorname{tr}(A^p) \equiv \operatorname{tr}(A) \pmod p$, pour tout entier premier p.